Section 1 – PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Stainless Steel Covered Electrode

RECOMMENDED USE: SMAW (Shielded Metal Arc Welding)

SPECIFICATION: AWS A5.4

SUPPLIER: Crown Alloys Company
30105 Stephenson Hwy.
Madison Heights, MI. 48071

TELEPHONE NUMBER: (248) 588-3790

EMERGENCY NUMBER: Call CHEMTREC Day or Night 1-800-424-9300 / +1 703-527-3887

WEBSITE: www.crownalloys.com

Section 2 – HAZARDS IDENTIFICATION

2.1 Classification of the mixture
This product is placed on the market in solid form

2.1.1 Classification in accordance with GHS-US

Acute Tox. 4 (Oral) H302 STOT RE 1 H372
Skin Sens. 1 H317 Aquatic Acute 1 H400
Carc. 1B H350 Aquatic Chronic 3 H412

2.2 Label elements

GHS-US labelling

Hazard Pictograms (GHS-US):

- ! (GHS07)
- ⚠️ (GHS08)
- ⚠️ (GHS09)

Signal word (GHS-US): Danger

Hazard statements (GHS-US):

H302 – Harmful if swallowed
H317 – May cause an allergic skin reaction
H350 – May cause cancer
H372 – Causes damage to organs through prolonged or repeated exposure
H373 – May cause damage to brain and nervous system through prolonged or repeated exposure
H400 – Very toxic to aquatic life
H412 – Harmful to aquatic life with long lasting effects

Precautionary statements (GHS-US):

P201 – Obtain special instructions before use
P202 – Do not handle until all safety precautions have been read and understood
P260 – Do not breathe dust/fume/gas/mist/vapors/spray
P261 – Avoid breathing dust/fume/gas/mist/vapors/spray
P264 – Wash thoroughly after handling
P270 – Do not eat, drink or smoke when using this product
P272 – Contaminated work clothing should not be allowed out of the workplace
P273 – Avoid release to the environment
P280 – Wear protective gloves/protective clothing/eye protection/face protection

2.3 Other hazards
No additional information available

2.4 Unknown acute toxicity (GHS-US)
No data available
SAFETY DATA SHEET

CROWN ALLOYS COMPANY

Other hazards which do not result in GHS classification:

- Electrical shock can kill.
- Arc rays can injure eyes and burn skin.
- Welding arc and sparks can ignite combustibles and flammable materials.
- Overexposure to welding fumes and gases can be hazardous.
- Read and understand the manufacturer’s instructions, Safety Data Sheets and the precautionary labels before using these alloys. Refer to Section 8.

Substance(s) formed under the conditions of use:

- The welding fumes produced from these welding alloys may contain the following constituent(s) and/or their complex metallic oxides as well as solid particles or other constituents from the consumables, base metal, or base metal coating not listed below:

Section 3 – COMPOSITION / INFORMATION ON INGREDIENTS

3.1 Substances

Not applicable

Full text of H-phrases: See section 16

3.2 Mixture

Reportable Hazardous Ingredients

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>CAS-No.</th>
<th>Weight Percent (%)</th>
<th>GHS-US Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium and chromium alloys or compounds (as Cr)</td>
<td>7440-47-3</td>
<td>11.0 – 32.0</td>
<td>Comb. Dust</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>7440-50-8</td>
<td>4.00 max.</td>
<td>Comb. Dust</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>7439-89-6</td>
<td>30.0 – 50.0</td>
<td>Acute Tox. 4 (Oral), H302</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>7439-86-5</td>
<td>0.50 – 2.50</td>
<td>Comb. Dust</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>7440-02-0</td>
<td>0.70 – 37.0</td>
<td>Skin Sens. 1, H317</td>
</tr>
<tr>
<td>Silicon (Si)</td>
<td>7440-03-1</td>
<td>2.00 max.</td>
<td>Not classified</td>
</tr>
</tbody>
</table>

Other components which may be present: **Flux**

- Calcium carbonate (CaCO₃)
- Calcium fluoride (Fluorspar) (CaF₂)
- Feldspar
- Kaolinite
- Potassium silicate (K₂SiO₃)
- Potassium oxide
- Sodium aluminum fluoride (Na₃AlF₆)
- Sodium fluoride (NaF)
- Silica (quartz) (SiO₂)
- Sodium silicate (Na₂SiO₃)
- Titanium dioxide (TiO₂)

Composition Comments: The term “Hazardous Ingredients” should be interpreted as a term defined in Hazard Communication standards and does not necessarily imply the existence of a welding hazard. These alloys may contain additional non-hazardous ingredients or may form additional compounds under the condition of use. Refer to Sections 2 & 8 for more information.

Section 4 – FIRST AID MEASURES

4.1 Description of first aid measures

Ingestion:

- Unlikely due to the form of the product. Avoid hand, clothing, food, and drink contact with metal fume or powder which can cause ingestion of particulate during hand to mouth activities such as drinking, eating, smoking, etc. If ingested, do not induce vomiting. Contact a poison control center. If symptoms develop, seek medical attention at once.

Inhalation:

- Remove to fresh air. If not breathing, give artificial respiration. Seek medical assistance immediately.

Skin Contact:

- Flush with water for at least 15 minutes. For reddened or blistered skin, or thermal burns, obtain medical assistance.

Eye Contact:

- Dust or fume from these alloys should be flushed from the eyes with clean, tepid water until transported to a medical facility. Do not rub eyes or keep eyes tightly closed. Obtain immediate medical assistance.
- Arc rays can injure eyes. If exposed, move victim to a dark room, remove contact lenses and cover eyes with a padded dressing and rest. Obtain medical assistance if symptoms persist.
4.2 Most important symptoms/effects, acute and delayed

Symptoms/injuries after inhalation: No adverse effects are expected from welding consumables until they are welded. Hexavalent chromium compounds, nickel metal and compounds and respirable crystalline silica are listed in the National Toxicology Program (NTP) Annual Report on Carcinogens, and are found to be a human carcinogen in the International Agency for Research on Cancer (IARC) Monographs, and are listed by OSHA/ACGIH as potential carcinogens. Short-term (acute) overexposure to the gases, fumes, and dusts may include irritation of the eyes, lungs, nose, and throat. Some toxic gases associated with welding may cause pulmonary edema, asphyxiation, and death. Acute overexposure may include signs and symptoms such as watery eyes, nose and throat irritation, headache, dizziness, difficulty in breathing, frequent coughing, or chest pain. The presence of nickel compounds in fume can cause irritation of nasal membranes and skin. The presence of carbon compounds in fume can cause metallic taste, nausea, tightness of chest, fever, and allergic reaction. Excessive inhalation or ingestion of manganese can produce manganese poisoning. Overexposure to manganese compounds may affect the central nervous system, symptoms of which are languor, sleepiness, muscular weakness, emotional disturbances, and spastic gait resembling Parkinsonism. These symptoms can become progressive and permanent if not treated. Excessive inhalation of fumes may cause “Metal Fume Fever” with Flu-like symptoms such as chills, fever, body aches, vomiting, sweating, etc.

Symptoms/injuries after skin contact: Dusts may cause irritation.

Symptoms/injuries after eye contact: Causes eye irritation.

Symptoms/injuries after ingestion: Not an anticipated route of exposure during normal product handling. May be harmful if ingested.

4.3 Indication of immediate medical attention and special treatment needed

No additional information available

Section 5 – FIRE-FIGHTING MEASURES

General Fire Hazards: As shipped, this product is nonflammable. However, welding arc and sparks can ignite combustibles and flammable products. Read and understand American National Standard Z49.1, “Safety In Welding, Cutting and Allied Processes” and National Fire Protection Association NFPA 51B, “Standard for Fire Prevention During Welding, Cutting and Other Hot Work” before using this product.

5.1 Extinguishing media

Suitable extinguishing media: Use extinguishing media appropriate for surrounding fire.

Unsuitable extinguishing media: None

5.2 Special hazards arising from the substance

Fire hazard: Not flammable.

Explosion hazard: None known.

5.3 Special protective equipment and precautions for firefighters

Special firefighting procedures: Use standard firefighting procedures and consider the hazards of other involved materials.

Special protective equipment for firefighters: Firefighters should wear full protective gear.

Section 6 – ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

If airborne dust and/or fume is present, use adequate engineering controls and, if needed, personal protection to prevent overexposure. Refer to recommendations in Section 8.

6.2 Environmental precautions

Avoid release to the environment

6.3 Methods and material for containment and cleaning up

Clean up spills immediately, observing precautions in the personal protective equipment in Section 8. Avoid generating dust. Prevent product from entering any drains, sewers or water sources. Refer to Section 13 for proper disposal. Attempt to reclaim the product if possible.

Section 7 – HANDLING AND STORAGE

7.1 Precautions for safe handling

7.2 Conditions for safe storage, including any incompatibilities

Store in closed original container in a dry place. Store away from incompatible materials. Store in accordance with local/regional/national regulations.

7.3 Specific end use(s)

For welding consumables and related products
Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1 Control parameters

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>ACGIH TLV (TWA)</th>
<th>OSHA PEL (TWA)</th>
<th>NIOSH REL</th>
<th>NIOSH STEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (7440-47-3)</td>
<td>0.5 mg/m³ [metal compound as Cr]</td>
<td>1.0 mg/m³ [metal compound as Cr]</td>
<td>0.005 mg/5 µg/m³ [Cr(VI) inorganic compounds as Cr(VI), water soluble]</td>
<td>0.005 mg/5 µg/m³ [Cr(VI) inorganic compounds as Cr(VI), insoluble]</td>
</tr>
<tr>
<td>Copper (7440-50-8)</td>
<td>0.2 mg/m³ (fume, as Cu)</td>
<td>0.1 mg/m³ (fume, as Cu)</td>
<td>1.0 mg/m³ (dust and mist, as Cu)</td>
<td></td>
</tr>
<tr>
<td>Iron (7439-89-6)</td>
<td>5.0 mg/m³ (as FeO) respirable fraction</td>
<td>10.0 mg/m³ (fume, as FeO₂)</td>
<td>5.0 mg/m³ (dust & fume as Fe)</td>
<td>N/A</td>
</tr>
<tr>
<td>Manganese (7439-99-5)</td>
<td>0.02 mg/m³ (elemental and inorganic compounds, as Mn – respirable fraction)</td>
<td>5.0 mg/m³ (fume, as Mn) Ceiling</td>
<td>1 mg/m³</td>
<td>3 mg/m³</td>
</tr>
<tr>
<td>Molybdenum (7439-98-7)</td>
<td>3.0 mg/m³ (respirable fraction, as Mo)</td>
<td>15.0 mg/m³ (total dust, as Mo)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nickel (7440-02-0)</td>
<td>1.5 mg/m³ (metal) (inhalable fraction)</td>
<td>1.0 mg/m³ (metal and insoluble compounds as Ni)</td>
<td>0.015 mg/m³</td>
<td>N/A</td>
</tr>
<tr>
<td>Silicon (7440-21-3)</td>
<td>Withdrawn</td>
<td>15.0 mg/m³ (total dust)</td>
<td>5.0 mg/m³ (respirable fraction)</td>
<td>10.0 mg/m³ (total)</td>
</tr>
<tr>
<td>Calcium carbonate (471-34-1)</td>
<td>None Established</td>
<td>5.0 mg/m³ (respirable fraction)</td>
<td>15.0 mg/m³ (total dust)</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium fluoride (7783-75-5)</td>
<td>2.5 mg/m³</td>
<td>2.5 mg/m³</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Feldspar (65847-25-5)</td>
<td>10.0 mg/m³</td>
<td>None Established</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Kaolin (1332-58-7)</td>
<td>2.0 mg/m³ (respirable fraction)</td>
<td>5.0 mg/m³</td>
<td>15.0 mg/m³ (total dust)</td>
<td>5.0 mg/m³ (respirable)</td>
</tr>
<tr>
<td>Potassium silicate (1312-76-1)</td>
<td>10.0 mg/m³</td>
<td>None Established</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sodium aluminum fluoride (15096-52-5)</td>
<td>2.5 mg/m³</td>
<td>2.5 mg/m³</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sodium fluoride (7681-49-4)</td>
<td>2.5 mg/m³</td>
<td>2.5 mg/m³</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Silica (quartz) (14808-60-7)</td>
<td>0.025 mg/m³ (respirable fraction)</td>
<td>2.4 millions of particles per cubic foot of air (respirable)</td>
<td>0.1 mg/m³</td>
<td>0.3 mg/m³ (total dust)</td>
</tr>
<tr>
<td>Titanium dioxide (13463-67-7)</td>
<td>10.0 mg/m³</td>
<td>15.0 mg/m³ (total dust)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

8.2 Exposure controls

Appropriate Engineering Controls:

Use enough ventilation, local exhaust at the arc, or both to keep the fumes and gases from the worker's breathing zone & the general area. Maintain exposures below acceptable exposure levels (see Section 8.1). Use industrial hygiene air monitoring to ensure that your use of these products does not create exposures that exceed the recommended exposure limits. Always use exhaust ventilation in user operations such as high temperature cutting, grinding, welding and brazing. Train the welder to keep his head out of the fume plume. Confined spaces require adequate ventilation and/or air supplied respirators. Read and understand the manufacturer's instructions and the precautionary label on the product. See American National Standard Z49.1, Safety in Welding, Cutting, and Allied Processes, published by the American Welding Society, 8669 Doral Blvd. Suite 130, Doral, FL 33166 and OSHA Publication 2206 (29CFR1910), US Government Printing Office, Washington, D.C. 20402 for more details on many of the following.

General information:

Exposure Guidelines: Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs) are values published by the American Conference of Government Industrial Hygienists (ACGIH). ACGIH Statement of Positions Regarding the TLVs® and BEIs® states that the TLV-TWA should be used as a guide in the control of health hazards and should not be used to indicate a fine line between safe and dangerous exposures. See Section 10 for information on potential fume constituents of health interest. Threshold Limit Values are figures published by the American Conference of Government Industrial Hygienists.

Eye/face protection:

Wear helmet or use face shield with filter lens shade number 12 or darker for open arc processes. No specific lens shade recommendation for submerged arc processes. Shield others by providing screens and flash goggles.

Skin/Hand Protection:

Wear protective gloves. Suitable gloves can be recommended by the glove supplier.
Protective Clothing:
Wear hand, head, and body protection which help to prevent injury from radiation, sparks and electrical shock. See 249.1. At a minimum this includes welder's gloves and a protective face shield, and may include arm protectors, aprons, hats, shoulder protection, as well as dark substantial clothing. Wear dry gloves free of holes or split seams. Train the welder not to permit electrically live parts or electrodes to touch skin, clothing or other if they are wet. Insulate yourself from the work piece and ground using dry plywood, rubber mats or other dry insulation.

Respiratory Protection:
Keep your head out of fumes. Use enough ventilation and local exhaust to keep fumes and gases from your breathing zone and the general area. An approved respirator should be used unless exposure assessments are below applicable exposure limits. Use respirable fume respirator or air supplied respirator when welding in confined space or where local exhaust or ventilation does not keep exposure below TLV's (see Section 8.1). Use only NIOSH approved respirators in accordance with 29 CFR 1910.134 – Respiratory Protection. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998).

Hygiene measures:
Do not eat, drink or smoke when using the product. Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Cosmetics should not be applied in areas where exposures exist! Routinely wash work clothing and protective equipment to remove contaminants.

Determine the composition and quantity of fumes and gases to which workers are exposed by taking an air sample from inside the welder's helmet if worn or in the worker's breathing zone. Improve ventilation if exposures are not below limits. See ANSI/AWS F1.1, F1.2, F1.3 and F1.5, available from the American Welding Society, www.aws.org.

<table>
<thead>
<tr>
<th>Section 9 – PHYSICAL AND CHEMICAL PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
</tr>
<tr>
<td>Physical state</td>
</tr>
<tr>
<td>Form</td>
</tr>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Odor</td>
</tr>
<tr>
<td>Odor threshold</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Melting point/freezing point</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
</tr>
<tr>
<td>Flash Point</td>
</tr>
<tr>
<td>Evaporation rate</td>
</tr>
<tr>
<td>Initial boiling point and boiling range</td>
</tr>
<tr>
<td>Flammability limit - upper (%)</td>
</tr>
<tr>
<td>Flammability limit - lower (%)</td>
</tr>
<tr>
<td>Explosive limit - upper (%)</td>
</tr>
<tr>
<td>Explosive limit - lower (%)</td>
</tr>
<tr>
<td>Vapor pressure</td>
</tr>
<tr>
<td>Vapor density</td>
</tr>
<tr>
<td>Relative density</td>
</tr>
<tr>
<td>Solubility in water</td>
</tr>
<tr>
<td>Solubility (other)</td>
</tr>
<tr>
<td>Partition coefficient (n-octanol/water)</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
</tr>
<tr>
<td>Decomposition temperature</td>
</tr>
<tr>
<td>Viscosity</td>
</tr>
</tbody>
</table>

Section 10 – STABILITY AND REACTIVITY

10.1 Reactivity
This product is non-reactive under normal conditions of use, storage and transport.

10.2 Chemical stability
This product is stable under normal conditions.

10.3 Possibility of hazardous reactions
Will not occur.

10.4 Conditions to avoid
Uncontrolled exposure to extreme temperatures and incompatible materials.

10.5 Incompatible materials
Strong acids, strong oxidizers, strong bases, mineral acids, some halogenated compounds, phosphorus and mercury.

10.6 Hazardous decomposition products
Welding/brazing fumes and gases can't be classified simply. The composition and quantity of both are dependent upon the metal being welded/brazed and the rods used. Coatings on the metal being welded/brazed (such as paint, plating, or galvanizing), the number of welders, the volume of the work area, the quality and the amount of ventilation, the position of the welder's head with respect to the gas plume, the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities), the process and procedures, as well as the welding/brazing consumables.

When these stainless steel covered electrodes are consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 3. Decomposition products of normal operation include those originating from the volatilization, reaction, or oxidation of the materials shown in Section 3, plus those from the base metal, coatings, etc., as noted above. Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from an arc, in addition to the shielding gases like argon and helium, whenever they are employed. Reasonably expected fume constituents of these stainless steel covered electrodes would include: Complex oxides of iron, manganese, silicon, chromium, nickel, molybdenum, copper, carbon dioxide, carbon monoxide, ozone and nitrogen oxides.

Some products may also contain antimony, barium, molybdenum, aluminum, niobium, magnesium, strontium, tungsten, and/or zirconium. The fume limit for chromium, nickel and/or manganese may be reached before the general welding fume limit of 5 mg/m^3 is reached. One recommended way to determine the composition and quantity of fumes and gases to which workers are exposed is to take an air sample inside the welder's helmet if worn or in the worker's breathing zone. See ANSI/AWS F1.1 "Method for Sampling Airborne Particles Generated by Welding and Allied Processes" and "Characterization of Arc Welding Fume" available from the American Welding Society, 8669 Doral Blvd. Suite 130, Doral, FL 33166.
A SIGNIFICANT AMOUNT OF THE CHROMIUM IN THE FUMES CAN BE HEXAVALENT CHROMIUM, ALSO KNOWN AS Cr(VI), WHICH HAS A VERY LOW EXPOSURE LIMIT OF 0.005 mg/m³ (5 µg/m³). Monitor fume levels and Cr(VI) level. Train workers about the hazards of Cr(VI). Read and comply with OSHA’s permissible exposure limits for hexavalent chromium Cr(VI), Fed. Reg. 71 – 10099 (specifically 29 CFR 1910.1026, 29 CFR 1915.1026, and 29 CFR 1926.1126). For Cr(VI), OSHA requires: “The employer shall perform initial monitoring to determine the 8-hour TWA exposure for each employee on the basis of a sufficient number of personal breathing zone air samples to accurately characterize full shift exposure on each shift, for each job classification, in each work area”. Specialized equipment is required for monitoring Cr(VI) concentration in the workplace. OSHA Analytical Method Number ID -215 for area and number of personal breathing zone air samples to accurately characterize full shift exposure on each shift, for each job classification, in each work area. EU ROHS (European Union Restriction of Hazardous Substances): These stainless steel covered electrodes contain Chromium. During welding these alloys will produce Cr(VI) (hexavalent chromium), however, the weld deposit does not contain Cr(VI) as it will all be in the zero valent state or as Cr(III) as an oxide. FINISHED PRODUCTS MANUFACTURED USING THESE STAINLESS STEEL COVERED ELECTRODES WILL NOT CONTAIN ANY Cr(VI).

Section 11 – TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Ingestion: Health injuries from ingestion are not known or expected under normal use.

Inhalation: Potential chronic health hazards related to the use of welding consumables are most applicable to the inhalation route of exposure. Refer to Inhalation statements in this section.

Skin Contact: Arc rays can burn skin. Skin cancer has been reported.

Eye contact: Arc rays can injure eyes.

Symptoms related to the physical, chemical and toxicological characteristics

Inhalation: Short-term (acute) overexposure to welding fumes may result in discomfort such as metal fume fever, dizziness, nausea, or dryness or irritation of nose, throat, or eyes. May aggravate pre-existing respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to welding fumes can lead to siderosis (iron deposits in lung), central nervous system effects, bronchitis and other pulmonary effects. Respiratory exposure to the crystalline silica present in this welding electrode is not anticipated during normal use. Respiratory overexposure to airborne crystalline silica is known to cause silicosis, a form of disabling pulmonary fibrosis which can be progressive and may lead to death. Crystalline silica is on the IARC and NTP lists as posing a cancer risk to humans.

Information on toxicological effects

Acute toxicity (list all possible routes of exposure):

<table>
<thead>
<tr>
<th>Specified substance: MANGANESE</th>
<th>Specified substance: SILICON</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD50 (oral, rat) = 9000 mg/kg</td>
<td>ATE (oral) = 3160.0 mg/kg</td>
</tr>
<tr>
<td>ATE (oral) = 9000000.0 mg/kg</td>
<td>LD50 (oral, rat) = 3160 mg/kg</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 5.14 mg/l/4 hr</td>
<td>LC50 (inhalation, rat) > 2.08 mg/l (highest attainable concentration)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified substance: NICKEL</th>
<th>Specified substance: TITANIUM DIOXIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD50 (oral, rat) > 9000 mg/kg</td>
<td>LD50 (oral, rat) = 98.6 g/kg</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 10.2 mg/l/1 hr</td>
<td>ATE (oral) = 984.00 mg/kg</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 5.1 mg/l/4 hr</td>
<td>ATE (oral) = 1300 mg/kg bodyweight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified substance: CALCIUM FLUORIDE</th>
<th>Specified substance: POTASSIUM SILICATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD50 (oral, rat) = 4250 mg/kg</td>
<td>LD50 (oral, rat) = 1300 mg/kg</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 5070 mg/m³/4 hr</td>
<td>ATE (oral) = 1300.00 mg/kg bodyweight</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 6.82 mg/l/4 hr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified substance: COPPER</th>
<th>Specified substance: IRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD50 (oral, rat) = 481 mg/kg</td>
<td>LD50 (oral, rat) = 500 mg/kg</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 2.08 mg/l/4 hr</td>
<td>ATE (oral) = 500.00 mg/kg</td>
</tr>
<tr>
<td>LC50 (inhalation, rat) > 5.11 mg/l/4 hr</td>
<td>ATE (oral) = 1153 mg/kg</td>
</tr>
<tr>
<td>LC50 (dermal, rabbit) > 2000 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

Repeated dose toxicity (product): Not classified

Skin corrosion/irritation (product): Not classified

Serious eye damage/irritation (product): Not classified

Respiratory or skin sensitization (product): May cause an allergic skin reaction

Germ cell mutagenicity (product): Not classified

Carcinogenicity (product): May cause cancer

Titanium dioxide (13463-67-7)

International Agency for Research on Cancer (IARC) Monographs 2B (Possibly carcinogenic to humans)

Silica (quartz) (14808-60-7)

International Agency for Research on Cancer (IARC) Monographs 1 (Carcinogenic to humans)

National Toxicology Program (NTP) Status Known to be Human Carcinogen

Nickel (7440-02-0)

International Agency for Research on Cancer (IARC) Monographs 2B (Possibly carcinogenic to humans)

National Toxicology Program (NTP) Status Reasonably anticipated to be a Human Carcinogen
CROWN ALLOYS COMPANY

Reproductive toxicity (product): Not classified
Specific target organ toxicity - single exposure (product): Not classified
Specific target organ toxicity - repeated exposure (product): Causes damage to organs through prolonged or repeated exposure
Aspiration hazard (product): Not classified
Other Effects: Organic polymers may be used in the manufacture of various welding consumables. Overexposure to their decomposition byproducts may result in a condition known as polymer fume fever. Polymer fume fever usually occurs within 4 to 8 hours of exposure with the presentation of flu like symptoms, including mild pulmonary irritation with or without an increase in body temperature. Signs of exposure can include an increase in white blood cell count. Resolution of symptoms typically occurs quickly, usually not lasting longer than 48 hours.

Symptoms related to the physical, chemical and toxicological characteristics under the condition of use:
Specified substance: CHROMIUM (VI) Inhalation: Chromates may cause ulceration, perforation of the nasal septum, and severe irritation of the bronchial tubes and lungs. Liver damage and allergic reactions, including skin rash, have been reported. Asthma has been reported in some sensitized individuals. Skin contact may result in irritation, ulceration, sensitization, and contact dermatitis. Chromates contain the hexavalent form of chromium (Chromium (VI)). Hexavalent chromium and its compounds are on the IARC and NTP lists as posing a cancer risk to humans. Specified substance: CARBON DIOXIDE LC50 (inhalation, rat) = 2000 mg/l /4h
Specified substance: MANGANESE Inhalation: Overexposure to manganese fumes may affect the brain and central nervous system, resulting in poor coordination, difficulty speaking, and arm or leg tremors. This condition can be irreversible. Specified substance: NICKEL Inhalation: Nickel and its compounds are on the IARC and NTP lists as posing respiratory cancer risk, and are skin sensitizers with symptoms ranging from slight itch to severe dermatitis.

Additional toxicological information under the conditions of use:
Acute toxicity
Specified substance: CHROMIUM (VI) LD50 (oral, rat) = 27 – 59 mg/kg LC50 (inhalation, rat) = 33 – 70 mg/m3 /4h Specified substance: CARBON DIOXIDE LC50 (inhalation, human) = 9000 ppm/5 min. Specified substance: CARBON MONOXIDE LC50 (inhalation, rat) = 1300 mg/l /4h Specified substance: NITROGEN DIOXIDE LC50 (inhalation, rat) = 88 ppm/4h Specified substance: OZONE LC50 (inhalation, human) = 50 ppm/30 min.

Carcinogenicity:
Specified substance: Chromium (VI) or Hexavalent Chromium
International Agency for Research on Cancer (IARC) Monographs 1 (Carcinogenic to humans)
National Toxicology Program (NTP) Status Known to be human carcinogen
Specified substance: Chromium Oxide
International Agency for Research on Cancer (IARC) Monographs 3 (Not classifiable as to its carcinogenicity to humans)
Specified substance: Nickel
International Agency for Research on Cancer (IARC) Monographs 2B (Possibly carcinogenic to humans)
National Toxicology Program (NTP) Status Reasonably anticipated to be a Human Carcinogen

Section 12 – ECOLOGICAL INFORMATION
Ecotoxicity
Acute hazards to the aquatic environment:
Fish
Specified substance: COPPER and compounds (as Cu) LC50 (Fathead minnow (Pimephales promelas), 96 h): 1.6 mg/l LC50 (Fathead minnow (Pimephales promelas), 96 h): 0.0068 – 0.0156 mg/l LC50 (Fathead minnow (Pimephales promelas) [static], 96 h): <0.3 mg/l Specified substance: NICKEL LC50 (Fathead minnow (Pimephales promelas), 96 h): 2.916 mg/l LC50 (Chromis chromis), 96 h): >100 mg/l Specified substance: IRON and/or iron alloys (as Fe) LC50 (Chromis chromis), 96 h): 0.56 mg/l
Specified substance: SODIUM SILICATE LC50 (Western mosquitofish (Gambusia affinis), 96 h): 1.800 mg/l Specified substance: IRON and/or iron alloys (as Fe) LC50 (Chromis chromis) [semi-static], 96 h): 0.68 mg/l
Specified substance: CALCIUM CARBONATE LC50 (Rainbow trout (Oncorhynchus mykiss), 96 h): > 100/kg Specified substance: MOLYBDENUM LC50 (Rainbow trout (Oncorhynchus mykiss), 96 h): 800 mg/l
Specified substance: COPPER and compounds (as Cu) EC50 (Water flea (Daphnia magna), 48 h): 0.102 mg/l EC50 (Pseudokirchneriella subcapitata) [static], 72 h): 0.0426 – 0.0535 mg/l EC50 (Daphnia Magna) [Static], 48 h): 0.03 mg/l EC50 (Pseudokirchneriella subcapitata) [static], 96 h): 0.031 – 0.054 mg/l Specified substance: NICKEL EC50 (Water flea (Daphnia magna), 48 h): 1 mg/l EC50 (Pseudokirchneriella subcapitata), 72 h): 0.18 mg/l EC50 (Pseudokirchneriella subcapitata) [static], 96 h): 0.174 – 0.311 mg/l EC50 (Daphnia magna), 48 h): >100 mg/l
Specified substance: SODIUM SILICATE EC50 (Water flea (Ceriodaphnia dubia), 48 h): 22.94 – 49.01 mg/l Specified substance: NICKEL EC50 (Water flea (Daphnia magna), 48 h): 40 mg/l
Specified substance: CALCIUM CARBONATE EC50 (Water flea (Daphnia magna), 48 h): > 100/kg

STAINLESS COVERED ELECTRODE
Date Prepared: 05/12/209
Chronic hazards to the aquatic environment:

- **Fish (product):** Not classified
- **Aquatic Invertebrates (product):** Not classified
- **Toxicity to Aquatic Plants (product):** Not classified

Specified substance: COPPER and/or copper alloys and compounds (as Cu) - LC50 (Green algae (Scenedesmus dimorphus), 3 d); 0.0623 mg/l

Persistence and Degradability

- **Biodegradation (product):** No data available
- **Bioaccumulative Potential**

 | Specified substance: COPPER and compounds (as Cu) Blue-green algae (Anacystis nidulans), Bioconcentration Factor (BCF): 36.01 (Static) | Specified substance: NICKEL Zebra mussel (Dreissena polymorpha), Bioconcentration Factor (BCF): 5,000 - 10,000 (Lotic) Bioconcentration factor calculated using dry weight tissue conc |

Mobility in Soil: No data available

Section 13 – DISPOSAL CONSIDERATIONS

Waste disposal recommendations: Prevent waste from contaminating surrounding environment. Discard any product, residue, disposable container or liner in an environmentally acceptable manner, in full compliance with international/federal/state/local regulations. However, alloy wastes are normally collected to recover metal values.

Section 14 – TRANSPORT INFORMATION

In accordance with DOT / ADR / RID / ADNR / IMDG / ICAO / IATA

14.1 UN number

Not a dangerous good in sense of transport regulations

14.2 UN proper shipping name

Not applicable

Section 15 – REGULATORY INFORMATION

15.1 US Federal regulations

<table>
<thead>
<tr>
<th>Chromium (7440-47-3)</th>
<th>Manganese (7439-96-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
</tr>
<tr>
<td>Listed on SARA Section 313 (Specific toxic chemical listings)</td>
<td>Listed on SARA Section 313 (Specific toxic chemical listings)</td>
</tr>
<tr>
<td>SARA Section 313 - Emission Reporting: 1.0 %</td>
<td>SARA Section 313 - Emission Reporting: 1.0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nickel (7440-02-0)</th>
<th>Iron (7439-89-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
</tr>
<tr>
<td>Listed on SARA Section 313 (Specific toxic chemical listings)</td>
<td>Listed on SARA Section 313 (Specific toxic chemical listings)</td>
</tr>
<tr>
<td>SARA Section 313 - Emission Reporting: 0.1%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molybdenum (7439-98-7)</th>
<th>Silicon (7440-21-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcium fluoride (CaF₂) (7789-75-5)</th>
<th>Titanium dioxide (13463-67-7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potassium silicate (1312-76-1)</th>
<th>Sodium silicate (1344-09-8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Silica, crystalline (14808-60-7)</th>
<th>Calcium carbonate (1317-65-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
<td>Listed on the United States TSCA (Toxic Substances Control Act) inventory</td>
</tr>
</tbody>
</table>

15.2 US State regulations

<table>
<thead>
<tr>
<th>Nickel (7440-02-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. - California - Proposition 65 - Carcinogens List Yes</td>
</tr>
<tr>
<td>U.S. - California - Proposition 65 - Developmental Toxicity Yes</td>
</tr>
<tr>
<td>U.S. - California - Proposition 65 - Reproductive Toxicity - Female Yes</td>
</tr>
<tr>
<td>U.S. - California - Proposition 65 - Reproductive Toxicity - Male No significance risk level (NSRL)</td>
</tr>
</tbody>
</table>

| U.S. - Massachusetts - Right To Know List Yes |
| U.S. - Minnesota - Hazardous Substance List Yes |

<table>
<thead>
<tr>
<th>Titanium dioxide (13463-67-7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. - California - Proposition 65 - Carcinogens List Yes</td>
</tr>
<tr>
<td>U.S. - California - Proposition 65 - Developmental Toxicity Yes</td>
</tr>
<tr>
<td>U.S. - California - Proposition 65 - Reproductive Toxicity - Female Yes</td>
</tr>
<tr>
<td>U.S. - California - Proposition 65 - Reproductive Toxicity - Male No significance risk level (NSRL)</td>
</tr>
</tbody>
</table>

| U.S. - Massachusetts - Right To Know List Yes |
| U.S. - Minnesota - Hazardous Substance List Yes |
| U.S. - New Jersey - Right to Know Hazardous Substance List Yes |
| U.S. - Pennsylvania - RTK (Right to Know) List Yes |
CROWN ALLOYS COMPANY

SAFETY DATA SHEET

Silica, crystalline (14808-60-7)

U.S. - California - Proposition 65 - Carcinogens List
U.S. - California - Proposition 65 - Developmental Toxicity
U.S. - California - Proposition 65 - Reproductive Toxicity - Female
U.S. - California - Proposition 65 - Reproductive Toxicity - Male

Yes

No significance risk level (NSRL)

STOT RE 2

STOT RE 1

Repr. Tox. 2

Carc. 2

Carc. 1B

Carc. 1A

Aquatic Chronic 3

Aquatic Acute 1

Acute Tox.

U.S. - Massachusetts - Right To Know List
U.S. - Minnesota - Hazardous Substance List
U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Pennsylvania - RTK (Right to Know) List

U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Massachusetts - Right To Know List
U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Pennsylvania - RTK (Right to Know) List

U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Pennsylvania - RTK (Right to Know) List

Siemens (7440-47-3)

Manganese (7439-96-5)

U.S. - Massachusetts - Right To Know List
U.S. - Minnesota - Hazardous Substance List
U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Pennsylvania - RTK (Right to Know) List

U.S. - Massachusetts - Right To Know List
U.S. - Minnesota - Hazardous Substance List
U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Pennsylvania - RTK (Right to Know) List

Calcium carbonate (1317-65-3)

U.S. - Massachusetts - Right To Know List
U.S. - Minnesota - Hazardous Substance List

U.S. - New Jersey - Right to Know Hazardous Substance List
U.S. - Pennsylvania - RTK (Right to Know) List

Section 16 – OTHER INFORMATION

SUPERSEDES LAST REVISION: 03/15/2018 (SDS)

HMS RATING (Hazardous Materials Information System)

Health (blue) - 2
Flammability (red) - 0
Reactivity (yellow) - 0
Protective Equipment - X

Health Hazard: 2 (moderate acute or significant chronic exposure hazard)
Flammability Hazard: 0 (minimal hazard)
Reactivity Hazard: 0 (normally stable)

NATIONAL FIRE PROTECTION ASSOCIATION:

Health Hazard: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure cause serious temporary or residual injury); 4 (materials that under very short exposure causes death or major residual injury).
Flammability Hazard: Refer to definitions for "HMS RATING"
Reactivity Hazard: Refer to definitions for "HMS RATING"

DEFINITIONS OF TERMS

ACGIH - American Conference of Governmental Industrial Hygienists
CAS No. - Chemical Abstracts Service Number
EPA - Environmental Protection Agency
GHS - Globally Harmonized System
IARC - International Agency for Research on Cancer
LC50 - Lethal Concentration (50 percent kill)
LCLO - Lowest published lethal concentration
LD50 - Lethal dose (50 percent kill)
LDLO - Lowest published lethal dose
NIOSH - National Institute of Occupational Safety and Health

Full text of H-Phrases (from Section 2)

Acute Tox. 4 (Oral) Acidic substance, Category 4
Aquatic Acute 1 Hazardous to the aquatic environment — Acute Hazard, Category 1
Aquatic Chronic 3 Hazardous to the aquatic environment — Chronic Hazard, Category 3
Carc. 1A Carcinogenicity, Category 1A
Carc. 1B Carcinogenicity, Category 1B
Carc. 2 Carcinogenicity, Category 2
Repr. Tox. 2 Reproductive toxicity, Category 2
Skin Sens. 1 Sensitisation — Skin, category 1
STOT RE 1 Specific target organ toxicity — Repeated Exposure, Category 1
STOT RE 2 Specific target organ toxicity — Repeated Exposure, Category 2
STOT SE 3 Specific target organ toxicity — Single exposure, Category 3
H302 Harmful if swallowed

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES: Crown Alloys Company urges each end user and recipient of this SDS to study it carefully. If necessary, consult an industrial hygienist or other expert to understand this information and safeguard the environment and protect workers from the potential hazards associated with the handling or use of this product. The information in this document is believed to be correct as of the date issued. However, this information is provided without any representation or warranty, expressed or implied, regarding accuracy or correctness. The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons we do not assume responsibility and expressly disclaim liability of loss, damage, or expense arising from it or any way connected with the handling, storage, use, or disposal of this product. Data may be changed from time to time. Be sure to consult the latest edition of the SDS. Compliance with all applicable Federal, State, Provincial and local laws and regulations remain the responsibility of the user.